Chapter 14, 15:

- Terminology: experiment, sample space, outcome, event, disjoint, independent, law of large numbers
- A probability is between 0 and 1 always!
- If you have disjoint events and add up their probabilities, the sum cannot be greater than 1
- The sum of probabilities for all outcomes in the sample space $=1$
- Probability of 1 means it is a "sure event"
- probability of 0 means it is an "impossible event"
- How to draw a Venn Diagram
- Answering probability questions
- How to calculate probability from a table
- "Or" is a union (U), "And" is an intersection (\cap).
- Probability Rules:
- Complement Rule
- Addition Rule (for disjoint events)
- General Addition Rule, aka Inclusion-Exclusion Rule (no assumption about disjoint)
- De Morgan's Rule
- Multiplication Rule (for independent events)
- General Multiplication Rule: $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B} \mid \mathrm{A})$ (no assumption about independence)
- Probability of a union of events is the sum of the probabilities ONLY if the events are disjoint
- e.g. Probability of rolling a 2 or 3 with a 6 -sided die is $\mathrm{P}(2 \cup 3)=\mathrm{P}(2)+\mathrm{P}(3)$ because rolling a 2 and rolling a 3 are disjoint
- e.g. Probability of rolling a number greater than 3 or rolling an even is not $\mathrm{P}($ number $>3)+$ P (even number) because these are not disjoint events - rolling a 4 or 6 is an outcome in both events
- Don't assume two events are disjoint (i.e. don't assume the probability of the intersection is zero)
- Probability of an intersection of events is the product of the probabilities ONLY if the events are independent.
- When is it a reasonable assumption that two events are independent?
- Conditional Probability - what it means
$\circ \mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is only defined if $\mathrm{P}(\mathrm{B})>0$! You can't divide by zero EVER!
- Test for independence based on a Table
- Get marginal distribution from a table
- Bayes Theorem (it's a monster of a formula, but really good to remember it!)
- Tree Diagrams

